Modulation of rat corticohippocampal synaptic activity by high pressure and extracellular calcium: single and frequency responses.

نویسندگان

  • Adolfo E Talpalar
  • Yoram Grossman
چکیده

High pressure (>1.5 MPa) induces a series of disturbances of the nervous system that are generically termed high-pressure nervous syndrome (HPNS). HPNS is characterized by motor and cognitive impairments. The neocortex and the hippocampus are presumably involved in this last disorder. The medial perforant path (MPP) synapse onto the granule cells of the dentate gyrus is the main connection between these structures. We have studied high-pressure (HP) effects on single and frequency response of this synapse. Since effects of HP on various synapses were mimicked by reducing [Ca2+]o, results under these conditions were compared. Medial perforant path-evoked field excitatory postsynaptic potentials (fEPSPs) were recorded from granule cells in rat brain slices. Slices were exposed to high pressure of helium (0.1-10.1 MPa) at 30 degrees C. HP depressed single fEPSPs by 35 and 55% at 5.1 and 10.1 MPa, respectively, and increased paired-pulse facilitation (PPF) at 10- to 40-ms inter-stimulus intervals. Frequency-dependent depression (FDD) was enhanced by HP during trains of stimuli at 50 but not at 25 Hz. Depression of single fEPSPs by reduction of [Ca2+]o from 2 mM control to 1 mM at normal pressure was equivalent to the effect of 10.1 MPa at control [Ca2+]o. However, this low [Ca2+]o induced greater enhancement of PPF, and in contrast, turned FDD at 25-50 Hz into frequency-dependent potentiation. These results suggest that HP depresses single synaptic release by reducing Ca2+ entry, whereas slowing of synaptic frequency response is independent of Ca2+. These findings increase our understanding of HPNS experienced by deep divers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices

Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

The role of muscarnic cholinergic receptor of the bed nucleus of stria terminalis on cardiovascular response and baroreflex modulation in rat.

Introduction: The bed nucleus of the stria terminalis (BST) is a limbic structure which is involved in cardiovascular regulation and baroreflex modulation. The presence of cholinergic synaptic terminalis with high level of muscarinic receptors in the BST has been demonstrated. This study was performed to find the role of the cholinergic muscarinic receptor in cardiovascular response and baro...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2003